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VEHICLE  CONCEPTS AND TECHNOLOGY  REQUIREMENTS  FOR BUOYANT 
HEAVY-LIFT  SYSTEMS 

Mark D. Ardema 

Ames Research Center 

Several buoyant-vehicle (airship) concepts proposed for short  hauls of heavy payloads are described. Numer- 
ous studies have identified operating cost and payload  capacity  advantages  relative to existing or proposed 
heavy-lift helicopters for such  vehicles. Applications mvolving payloads of from 15 tons up to 800 tons have 
been identified. The  buoyant quad-rotor concept is  discussed  in detail, including the history of its  development, 
current estimates of performance and economics, currently perceived technology requirements, and recent 
research  and technology development. It is concluded that the  buoyant quad-rotor, and possibly other  buoyant 
vehicle concepts, has the potential of satisfying the market for very heavy vertical lift but that additional 
research  and technology development are  necessary.  Because of uncertainties in  analytical prediction methods 
and  small-scale experimental measurements, there is a strong  need for large  or full-scale experiments in ground 
test facilities and, ultimately, with a flight research vehicle. 

INTRODUCTION 

Feasibility  studies of modern airships (refs.  1-18) 
and other studies  (refs.  19-27) have determined  that 
modern air-buoyant vehicles (airships) could satisfy 
the need for air transport of heavy or outsized  pay- 
loads over short distances. 

There are two reasons that such aircraft, called 
heavy-lift airships (HLAs), appear attractive  for  both 
civil and military heavy-lift applications. First,  buoy- 
ant  lift does not lead to  inherent  limitations  on pay- 
load  capacity as does dynamic  lift. Large conven- 
tional dynamic-lift vehicles, including rotorcraft,  tend 
to follow a “square-cube  law” in that lift increases 
with the square of the vehicle’s principal  dimension, 
while empty weight increases with  the  cube,  notwith- 
standing the effect of fixed-weight  items.  This  means 
that  the vehicle’s structural weight increases faster 
than  the gross weight as size is increased; thus, as the 
size is increased, the percentage of the  total weight 
available for useful load decreases. On the  other  hand, 
buoyant-lift aircraft tend  to follow a “cube-cube  law” 
and  thus have approximately  the same efficiency at 
all sizes. 

Figure 1 shows the  history of rotorcraft vertical- 
lift capability. Current maximum  payload of free 

world vehicles is about 18 tons. Listed in the figure 
are several payload candidates for airborne vertical 
lift that are beyond this 18-ton payload weight limit, 
indicating a market  for increased lift capability. 
Extension of rotorcraft lift to  a  35-ton payload is 
possible with  existing  technology (refs. 28,  29),  and 
future development of conventional rotorcraft up to 
a  75-ton payload  appears feasible (ref. 29). With HLA 
concepts, however,  payioad  capability of up to  
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Figure 1 .- Potential heavy-lift payloads. 



200  tons is possible using existing  propulsion-system 
technology or even, if desired,  existing rotorcraft 
propulsion-system  hardware. 

The second reason airships appear attractive  for 
heavy lift is cost. Most HLA concepts are projected 
to offer lower  development,  manufacturing, mainte- 
nance, and fuel costs than large rotorcraft  with  the 
same payloads; thus  total operating and life-cycle 
costs  may be lower. The lower development  cost 
arises from extensive use of existing  propulsion- 
system  technology or hardware or  both, making 
major new propulsion-system  development  unneces- 
sary. Low manufacturing  and  maintenance  costs 
accrue because buoyant-lift  components are less 
expensive to produce and  maintain than dynamic-lift 
components. Lower fuel  costs follow directly from 
lower  fuel consumption. As fuel prices increase, the 
high fuel  efficiency of HLAs will become increasingly 
important. HLA costs  and fuel efficiency will be dis- 
cussed in more  detail later. 

Because the  market  for vertical lift of payloads  in 
excess of 20  tons is a new one  for aerial vehicles, the 
size and characteristics of the  market are somewhat 
uncertain. As a  result, several studies have been 
undertaken. Many of these studies have been pri- 
vately funded  and their  results we  proprietary,  but 
the results of some have been  published (refs. 26,27, 
30-33). HLA market-study conclusions have been 
generally favorable. Table 1 summarizes the results 
of one of these,  the recently  completed NASA- 
sponsored study of civil markets for HLAs (refs. 30, 
3 1). 

The HLA civil market  tends to fall into  two  cate- 
gories. The first consists of services that are now or 
could  be  performed by  helicopters,  but perhaps  only 
on a very limited basis. Payloads  are low to  moderate, 
ranging from  about 15 to 80 tons. Specific markets 
include logging, containership  offloading  (of interest 
also to  the military),  transmission-tower erection,  and 
support of remote drill rigs. HLAs would  be able to 
capture greater shares of these markets than helicop- 
ters because of their projected  lower  operating  costs. 
Most of these applications  are relatively sensitive to 
cost.  The largest market in terms of the  potential 
number of vehicles required is logging. 

The second HLA market  category involves heavy 
payloads of 180 to 800 tons - a totally new applica- 
tion of vertical aerial lift. This market is concerned 
primarily  with support of heavy construction proj- 
ects, especially power-generating plant  construction. 
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TABLE 1 .- PRINCIPAL HEAVY-LIFT 
AIRSHIP MARKETS 

[From refs. 30,311 

Market  area 

Heavy lift 
Logging 
Unloading cargo in 

congested ports 
High-voltage transmis- 

sion tower  erection 
Support of remote 

drill-rig installations 

Ultraheavy lift 
Support of power- 

generating plant 
construction 

shore platform 
construction 

Support of oil-gas off- 

Other  transportation 

Useful 
load, 
tons 

25-75 

16-80 

13-25 

25-1 50 

80-900 

5 00 
25-800 

Number of 
vehicles 
required 

>I 000 

200 

10 

15 

30 

3 
10 

The availability of vertical aerial lift  in this payload 
range will make the expensive infrastructure asso- 
ciated with surface  movements of heavy or bulky 
items largely unnecessary. It would also allow more 
freedom in the selection of plant sites by eliminating 
the  restrictions imposed by  the necessity for readily 
accessible heavy suface transportation.  Further,  it 
could  substantially  reduce construction costs of 
complex assemblies by allowing more  extensive  pre- 
assembly at  manufacturing areas. This  application is 
relatively insenstitive to cost of service. 

In the remainder of this  paper, HLA concepts will 
be reviewed. The  buoyant  quad-rotor (BQR), or heli- 
stat, will be  emphasized because it has  been the  prin- 
cipal subject of technology  development efforts to 
date. As a  result, there is more  technical information 
available about  the BQR than  other HLA concepts. 

The  next section  briefly describes free-flying HLA 
concepts  other  than  the BQR. The following  section 
discusses the BQR in terms o f  (1) development  his- 
tory, (2) description of the  concept, (3)  technology 
needs  as  currently  perceived, and (4) the  current 
NASA research and development program. 



HEAVY-LIFT AIRSHIP  CONCEPTS OTHER 
THAN  BUOYANT  QUAD-ROTOR 

The classical fully buoyant airship is unsuitable for 
most heavy-lift applications because of poor low- 
speed control  and ground-handling  characteristics. 
Therefore, almost all HLA concepts  that have been 
proposed are “hybrid”  aircraft,  that is, vehicles that 
obtain part of  their  total  lift  from  the displacement 
of air by  a lighter gas (buoyant  lift)  and  the remain- 
der by dynamic or propulsive forces. Because buoy- 
ant lift can be scaled up  to large sizes at low cost per 
pound of lift (as previously described), it is advan- 
tageous from  a cost standpoint in hybrid aircraft to 
provide as much of the  total lift as possible by buoy- 
ancy.  The  fraction of total lift derived by  dynamic  or 
propulsive forces is determined primarily by  the 
amount of control power  required. The  dynamic 
forces therefore provide propulsion and  control as 
well as a  portion of the  total  lift. 

The characteristics of hybrid aircraft  and  their 
potential  for  the heavy-lift mission were clearly recog- 
nized (by the mid-1970s) by Piasecki (refs. 12,  21), 

by Nichols (ref. 20), and by Nichols and  Doolittle 
(ref. 24). References 20 and  24, in  particular, 
describe a wide variety of possible hybrid HLA 
concepts. 

Perhaps the simplest and least expensive of the 
HLA concepts are those which  combine the  buoyant 
and dynamic-lift elements in discrete fashion without 
major  modification.  Examples, taken  from refer- 
ences 7 and  24, are shown  in figure 2. Although such 
systems will obviously require minimal development 
of new hardware, there may be serious operational 
problems associated with them. Safety and  controlla- 
bility  considerations  would likely restrict operation 
to fair weather.  Further, cruise speeds would be 
extremely low. The concept from reference 24  that is 
shown in figure 2 was rejected  by the  authors of 
reference 24 because of the  catastrophic failure which 
would result from an inadvertent  balloon  deflation. 

An early  hybrid HLA concept, which has subse- 
quently received a significant amount of study and 
some initial development, is a rotor-and-balloon con- 
figuration (called Aerocrane by  its inventors,  the 
All American Engineering Company). Early discus- 
sions of this  concept appear in references 19,  20, 

Figure 2.- Combined  discrete concepts (refs. 7 ,  24). 
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23-25,  34; two versions of  the Aerocrane are 
depicted in figure 3.  The original configuration con- 
sisted of a  spherical  helium-inflated balloon  with  four 
rotors (airfoils) mounted  at  the  equator. Propulsors 
and  aerodynamic  control surfaces  are mounted  on  the 
rotors.  The  entire  structure  (except  the crew cabin 
and payload support, which  are kept  stationary  by a 
retrograde drive system) rotates (typically at a rate  of 
10 rpm) to provide dynamic  rotor  lift  and  control. 
Principal applications envisioned for  the  rotor-balloon 
are logging and containership  offloading. 

Study  and technology  development of the  rotor- 
balloon concept have been pursued by All American 
Engineering and  others,  partly  under US. Navy spon- 
sorship. Emphasis of  the program  has  been on devis- 

ing  a  suitable control system.  A remotely controlled 
flying model was built to investigate stability,  con- 
trol,  and flying  qualities (fig. 4). Results (refs. 35-37) 
have shown that  the  rotor-balloon is controllable and 
that it promises to  be a vehicle with  a relatively low 
empty-to-gross weight ratio  and low  acquisition  cost 
across  a wide range of vehicle sizes. Technical issues 
that emerged were (1) the magnitude  and  effect of 
the Magnus force on a large rotating sphere and 
(2)  the high acceleration  environment (about 6 g in 
most designs) of  the propulsors. 

Although the rotor-balloon  technical issues are 
thought to be solvable, two characteristics  emerged  as 
being operationally  limiting. First, large vehicle tilt 
angles would  be  required to obtain  the necessary con- 

ORIGINAL 

n 

ADVANCED 

Figure 3.-  Aerocrane concept. 

Figure 4.- Aerocrane  remotely  controlled flying 
model. 

trol forces in some operating  conditions.  Second,  the 
high drag associated with  the spherical shape results 
in very low cruise speeds,  typically 25 mph  for a 
16-ton payload vehicle. This low speed means that 
operation in  winds of over 20 mph  probably is not 
possible and  that  the efficiency of operation in even 
light winds is significantly  degraded. Even with no 
wind,  the low speed will result in low productivity. 
Thus,  the original rotor-balloon concept was limited 
to very short-range  applications in very light winds. 

The advanced  configuration  rotor-balloon  depicted 
in figure 3 (ref. 38) is designed to overcome the 
operational shortcomings of the original concept. 
Winglets with aerodynamic  control systems are fitted 
to allow generation of large lateral-control  forces, 
thereby alleviating the need to  tilt  the vehicle. A len- 
ticular  shape is used for  the lifting gas envelope to 
decrease the aerodynamic drag. The increase in cruise 
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speed of the advanced concept  is, however,  accom- 
panied by some increase in design complexity  and 
structural weight. 

A  more  substantial departure  from  the original 
Aerocrane concept  has been  proposed  recently. The 
Cyclo-Crane of Aerocranes of Canada (refs. 39, 40) 
is essentially a new HLA configuration concept 
(fig. 5). It consists of an ellipsoidal lifting gas enve- 
lope with  four  strut-mounted airfoils at  the midsec- 
tion.  The propulsors  are also located  on these struts. 
This entire  structure  rotates  about  the longitudinal 
axis of the envelope to provide control forces  during 
hover.  Isolated from  the  rotating  structure  by  bear- 
ings are the  control cabin at  the nose and  the  aerody- 
namic  surfaces at  the tail. The payload is supported 
by a sling attached  to  the nose and  tail. The  rotation 

speed and yaw angles of  the wings on  their  struts are 
controlled to keep  the airspeed over the wings at a 
constant value, namely, a value equal to  the vehicle 
cruise speed. Thus,  for hover in still air, the wingspan 
axes are aligned with  the envelope  longitudinal axis. 
As forward  speed is increased, the vehicle rotational 
speed decreases and the wings are yawed until,  at 
cruise speed,  the  rotation is stopped  and  the wingspan 
axes  are  perpendicular to  the forward  velocity. 
Hence, in cruising flight the Cyclo-Crane acts as a 
winged airship. 

Preliminary analysis of the Cyclo-Crane has indi- 
cated that a cruising speed of 50 mph would  be  pos- 
sible with  a 10-ton payload vehicle and that  the 
economic  performance  would be favorable. However, 
there are obvious  questions of structural weight and 

HOVER CRUISE 

Figure 5 .- Cyclo-Crane concept (refs. 39,40). 
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aerodynamic interference between  the various vehicle 
components,  and more  detailed  investigation is 
required to resolve them. 

Another approach to heavy lift with  buoyant 
forces is the clustering of several small buoyant ele- 
ments. Examples of this are the ONERA concept  and 
the  Grumman  concept (ref. 41)  shown in figure 6. In 
the Grumman idea,  three airships of approximately 
conventional design such as the  one shown  are used 
to  lift moderate payloads. When heavy lift is needed, 
the three vehicles are lashed together temporarily 

while in the air. The  technique  for joining the vehicles 
and  the  controllability of the  combined system  need 
further  study. 

Finally,  another HLA concept  that  has received 
some attention is the  “ducted-fan  hybrid” shown in 
figure 7 (ref.  24). In  this vehicle, a toroidal-shaped 
lifting gas envelope provides a  duct or shroud  for  a 
centrally located fan or rotor. There  has  been too 
little  study  of  the  ducted fan hybrid, however, to per- 
mit an assessment of  its  potential. 

GRUMMAN  ONERA 

Figure 6.- Multielement concepts (refs. 7,41). 

Figure 7.- Ducted-fan  concept (ref. 24). 
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BUOYANT QUAD-ROTOR  CONCEPT 

History and Description 

The idea of combining  helicopter engine/rotor sys- 
tems with airship hulls is not new. In  the 1920s and 
1930s, a  French  engineer, E. Oehmichen,  not only 
conceived this idea but successfully built and flight- 
tested such aircraft, which he called the Helicostat 
(ref. 26). One of his first designs (top  photograph  in 
fig. 8) had  two  rotors driven by a single engine 
mounted  beneath a  cylindrical buoyant hull. Accord- 
ing to reference 26, Oehmichen’s purpose in adding 
the  buoyant hull to  the  rotor system was threefold - 
“to provide the helicopter with perfect stability, to 
reduce the load on  the  lift-rotors,  and  to slow down 
descent  with optimum efficiency.” 

Figure 8.- Oehmichen’s Helicostat  flight vehicles. 

Oehmichen’s later  effort was a quad-rotor design 
with two  rotors  mounted in the vertical plane and 
two in the  horizontal  (bottom  photograph in fig. 8). 
The hull was changed to an aerodynamic  shape  more 
characteristic of classical airships. Existing motion 
pictures of successful flights of the  Helicostat  demon- 
strate  that  the  buoyant  quad-rotor (BQR) concept 
was proven feasible in  the 1930s. 

The  modern  form of the  concept was first pro- 
posed by Piasecki (refs. 12,  21). Piasecki’s idea is to 
combine  existing,  somewhat  modified  helicopters 
with a buoyant  hull, as exemplified in figure 9. The 
configuration  shown in figure 9 will be called the 
“original” BQR concept in this  report.  The  attraction 
of the idea lies in its minimal development cost.  In 
particular,  no new major propulsion-system compo- 
nents would  be  needed  (propulsion  systems are his- 
torically the most expensive part of an all-new air- 
craft  development). A fly-by-wire master control sys- 
tem would  command the conventional controls 
within  each  helicopter to provide for lift augmenta- 
tion, propulsive thrust, and control power. 

Other variants of the BQR idea are currently under 
study. A design by Goodyear Aerospace (ref. 42) is 
shown in figure 10. As compared with original con- 
cept (fig. 9), this design (called the “advanced” con- 
cept)  has  a new propulsion  system,  auxiliary 
horizontal-thrusting propellers,  and aerodynamic tail 
surfaces  and  controls. The  four propulsion  system 
modules would make extensive use of existing rotor- 
craft components  and technology but be designed 

Figure 9.- Buoyant  quad-rotor, original concept 
(Helistat). 

Figure 10.- Buoyant  quad-rotor, advanced concept. 
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specifically for  the BQR. The  horizontal-thrusting 
propellers  would  be  shaft-driven from  the main rotor 
engines. These  propulsion  modules  would be designed 
more  for high reliability and low maintenance  costs 
and less for low empty weight than are typical heli- 
copter propulsion  systems. They would  be  “de-rated” 
relative to current systems, leading to  further reduc- 
tions in  maintenance  costs. 

In a revival of  the Helicostat concept, a buoyant 
dual-rotor HLA is currently  under study  by  Aero- 
spatiale (ref. 26). It would use the engines and  rotors 
from a small helicopter,  but propellers would be 
fitted for  forward  propulsion and yaw control 
(fig. 11). Payload would be about 4 tons;  the princi- 
pal application is envisioned to  be logging. 

”“ 

Figure 11 .- Modern Helicostat (ref. 26). 

Performance and Economics 

The performance  capability of the BQR design 
(fig. 9) examined  in the feasibility studies of refer- 
ences 12-14 and 16 is listed  in  table 2. This design 
employs  four CH-54B helicopters,  somewhat  modi- 
fied, and  a  nonrigid  envelope of 2.5X lo6 ft3.  Total 
gross weight with one engine inoperative is about 
325,000 lb, of which 150,000 lb is payload.  Empty- 
to-gross weight fraction is 0.455 and design cruise 
speed is 60 knots. Station-keeping is estimated to be 
possible in crosswinds up to 30 knots. Range with 
maximum  payload is estimated to be 100 n. mi.; with 
the payload replaced by auxiliary fuel,  the unrefueled 
ferry range would be over 1,000 n. mi.  Performance 
of the advanced concept (fig. 10) should be much 
better  than  that of the design shown in figure 9. 

In references 12,  16, and 21, the  ratio of buoyant- 
to-total lift (0) is chosen so that  the vehicle is slightly 

TABLE 2.- WEIGHT STATEMENT 
AND PERFORMANCE OF 75-TON 
BUOYANT QUAD-ROTOR, 
ORIGINAL CONCEPT 
[From refs. 12,161 

Gross weight: lb 
Rotor  lift, lb 
Buoyant  lift, lb 

Empty  weight, lb 
Useful load: lb 
Payload, lb 
Static heaviness: lb 
Envelope volume, ft3 
Ballonet volume, ft 
Ballonet ceiling, ft 
Hull fineness ratio 
Design speed (TAS), knots 
Design range 

With maximum pay- 

No payload, n . mi. 
load,  n. mi. 

Ferry, n. mi. 

324,950 
180,800 
144,150 
148,070 
176,800 

3,920 
2.5X106 
5.75X lo5  

8,500 

60 

150,000 

3.2 

100 
196 

1,150 

%ea level, standard  day, 93% infla- 
tion, one engine out, reserves for 
100 ft/min climb. 

“heavy” when completely  unloaded. In  effect,  the 
buoyant lift supports  the vehicle empty weight, leav- 
ing the  rotor lift to  support  the useful load (payload 
and  fuel).  A  different approach has  been suggested 
and studied by Bell et al.  (ref. 43). Bell et al. pro- 
posed that @ be selected so that  the  buoyancy  sup- 
ports  the  empty weight plus half the useful load. It is 
then necessary for  the  rotors  to  thrust downward 
when the vehicle is  empty with the same magnitude 
that  they must thrust upward  when  fully loaded. This 
same principle has been used in the  studies of the 
rotor-balloon. Use of the approach suggested by Bell 
et al. (high @), as opposed to  the approach assumed in 
table 2 (low p), has the  potential of offering  lower 
operating  costs (since buoyant lift is  less expensive 
than  rotor  lift) and better  control when lightly loaded 
(because higher rotor forces are available). In compar- 
ison, the low @ approach may result in a vehicle that 
is easier to handle on  the ground (since it is heavy 
when empty) and one  that is more  efficient  in cruise 
or ferry when lightly loaded or with no payload 
(because of low rotor forces). Selection of the best 
value of 0 depends on these and many other  factors 
and will require  a better technical  knowledge of the 
concept. 
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The BQR vehicle will be efficient in  both cruise 
and hover compared with conventional-design heavy- 
lift helicopters (HLH). This arises primarily from  the 
cost advantages of buoyant lift  when  compared with 
rotor  lift  on a  per-unit-of-lift basis, as discussed 
earlier. Fuel  consumption of the BQR vehicle in 
hover will be approximately half that of an equivalent 
HLH. Relative fuel  consumption of the BQR in cruise 
may be even less because of  the possibility of generat- 
ing dynamic  lift  on  the  hull,  thereby reducing or elim- 
inating the need for  rotor  lift in cruising flight. 

When cruising with a slung payload,  the cruising 
speeds of HLHs and BQR vehicles will be approxi- 
mately the same since external load is generally the 
limiting factor  on maximum  speed. When cruising 
without a payload, as in a  ferry mission, the speed of 
the BQR  will be  lower than  that of an HLH. The 
many HLA studies have shown,  however, that  the 
higher efficiency of the BQR more than offsets  this 
speed disadvantage. Therefore,  the BQR should have 
appreciably lower operating  costs per ton-mile in 
either  the loaded or unloaded condition. 

Total operating  costs per ton of payload per mile 
in cruise flight are compared in figure 12 (based on 
data provided by Goodyear). The figure shows that 
the advanced BQR concept offers  a decrease in oper- 
ating  costs by as much as a factor of 3 compared  with 
existing  helicopters. Of course,  much of this cost 
advantage results from  the larger payload of the BQR 
(approximately eight times larger). The low operating 
costs in cruise flight of the advanced concept com- 
pared with  those of the original arise from  the use  of 
propellers  instead of rotor cyclic pitch for forward 
propulsion and  from lower assumed propulsion  main- 
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Figure 12.- Relative heavy-lift operating costs. 

tenance costs. The advanced concept would  be partic- 
ularly efficient  when cruising lightly loaded (as in 
ferry), since it would operate essentially as a classical 
fully buoyant airship. 

Studies have shown that precision hover and 
station-keeping abilities approaching those of pro- 
posed HLHs are possible with BQR designs (refs. 12, 
21, 44-46). Automated precision hover  systems 
recently developed for an HLH (ref. 28) can be 
adapted  for BQR use. 

Ultimate  selection of the original (fig. 9), the 
advanced (fig. lo), or some other variant of  the BQR 
concept will depend  on  the relative importance of 
development cost, performance, and efficiency. This 
choice will obviously depend on  the uses to which the 
vehicle is to be put as well as on  the  total  number of 
vehicles to be built. 

Technology  Needs 

The many  recent  studies of the BQR concept have 
all concluded that  the concept is basically technically 
feasible, as was in fact verified by Oehmichen’s  lim- 
ited flight tests more than 40 years ago. However, to 
realize the best economic performance and most  suit- 
able operational  characteristics from  the  concept, as 
well as to minimize development risk and  cost, a sig- 
nificant amount of research and technology  develop- 
ment will be  required.  There  are  technology  needs  in 
the areas of aerodynamics, propulsion,  controls, 
structures and  materials, and  operations. 

In aerodynamics, the most important  requirement 
is to develop an accurate  analytical  characterization 
of the flow  field around  the vehicle. This character- 
ization must account  for aerodynamic  interference 
between all elements  of  the vehicle and must  be veri- 
fied by  experimental  data. Many of the  other  technol- 
ogy needs depend  on an accurate aerodynamic 
description of the vehicle. Specific aerodynamic  items 
of interest are (1) effect of the hull on  the  aerody- 
namic  environment of the  rotors, particularly for 
rotors in the  hull wake; (2) effect of the  rotor wake 
on  the hull  flow  field; (3) interactions  between  the 
vehicle and  the  ground, such as rotor  fountain  effects 
and suckdown on the hull caused by crossflow; and 
(4) accurate  estimation of cruise and hover perfor- 
mance in all flight conditions, including  oblique 
crosswinds and  atmospheric  turbulence. 

Propulsion  needs  include better definition of the 
design of BQR propulsion  modules based on existing 
helicopter  systems  technology. The effect of rotor/ 
hull aerodynamic interference on  rotor  loads  must  be 
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determined.  Rotor/rotor  and  rotorlground  inter- 
actions, such as ground  resonance,  must also be 
investigated. 

In flight controls,  the most important task is to 
define  suitable and  optimal control-systems  concepts. 
This will be  a  formidable  task because of the  many 
flight-control inputs  that are available. A BQR design 
may employ many or all of the following controls: 
rotor collective pitch (used in unison or differen- 
tially); rotor cyclic pitch; tilting or gimballed rotors 
in one or  two axes (free or  forced);  aerodynamic sur- 
faces; buoyancy  distribution (e.g., ballonets);  auxili- 
ary  thrustors; deflected  slipstream;  and cold jets. 
Also of importance is characterization of handling 
qualities, which are likely to be quite  different  from 
those of helicopters and  other VTOL aircraft. A new 
subset of handling-qualities  criteria will probably 
need to be  developed. Automatic precision hover 
systems need to be developed or adapted, possibly 
including active control systems for payload support. 
Preliminary work in BQR flight  dynamics and  con- 
trols is reported in  references 12 ,21 ,  and 4 4 4 6 .  

New technology in structures  and materials  could 
be quite crucial to successful HLA production 
vehicles. Perhaps the most important  item in this 
category is analysis of the propulsion-system/flexible- 
structure/aerodynamic  interactions, which may lead 
to critical design conditions  for  many vehicle compo- 
nents. Design and  manufacture of nonrigid envelopes 
and  interconnecting  structure in the sizes being con- 
templated is state  of  the  art, provided state-of-the-art 
materials are used. Modern filimentary  composite 
materials have the  potential  for reducing empty 
weight and permeability and  therefore increasing 
vehicle performance. They  would, however,  need 
further development for this  application.  If large- 
sized BQR vehicles are contemplated, rigid-structure 
envelopes will have to be considered.  Preliminary 
work  in BQR structures and  materials is reported in 
references 47-49. 

As for  any lighter-than-air (LTA) vehicle, opera- 
tional  factors will be important. Mooring systems 
need to be defined and analyzed. The mooring con- 
cept will influence  operating  suitability and  econom- 
ics and may affect vehicle design. Flight  procedures 
need definition, taking into  account  the  fact  that  the 
vehicle will typically be operating  in turbulent air 
near ground level. Finally, procedures and operating 
systems  must  be developed to handle all foreseeable 
inclement  weather. 

BQR technology  needs have commonality  with 
needs of other vehicles of  current  interest.  Nonbuoy- 

ant  quad-rotor aircraft also are being considered for 
the heavy-lift mission. Such  aircraft have many  tech- 
nical similarities to  the BQR (e.g., both will need 
development of fly-by-wire control systems for  multi- 
ple rotors).  Modern  conventional  airships  are  being 
proposed for coastal patrol  and related  applications 
(refs. 50-53);  these  aircraft will be required to 
station-keep and  hover and  therefore will require 
development of control systems for hover-capable 
buoyant vehicles. 

Research and Technology  Development 
Activity at Ames Research Center 

Over the last seven years, many organizations and 
individuals, both foreign and  domestic, private and 
public, have studied HLA concepts in general and  the 
BQR concept in particular. Foreign countries  that 
have conducted or funded published  studies  include 
Canada (the Province of Alberta (ref. 27); the 
National Research Council, Canadair (ref. 25); the 
Forest Engineering Research Institute  of Canada 
(ref. 32); Aerocranes of Canada (ref. 39); and others); 
Japan (Japanese Buoyant Flight Association (refs. 54,  
55), and  others); France (Aerospatiale (ref. 26),  and 
others); and  the U.S.S.R. In  the United States, gov- 
ernment agencies with HLA interest  and programs 
include NASA, the Navy, and  the  Forest Service. 
Many private U.S. companies have pursued  HLA 
work, some  under  government  sponsorship and some 
with private funds. In this report, only the BQR 
research and technology  program at Ames Research 
Center are reviewed. A comprehensive review of all 
HLA work under way would  require  a  much more 
lengthy report. 

Figure 13 is an overview of Ames Research Cen- 
ter’s LTA activity from  the Monterey  Workshop  in 
1974  through  the  end of 1979. Using the LTA vehicle 
concepts and potential missions collected at  the 
workshop as a data base, the feasibility study  of 
modern airships provided a  preliminary  evaluation of 
the LTA field.  There were two principal feasibility 
study  contractors, Boeing Vertol  and  Goodyear Aero- 
space, and funding was provided both  by NASA and 
the Navy. The most important conclusion of the 
studies was the identification of the  potential of 
LTA vehicles for heavy vertical lift. 

Subsequent  to  the feasibility studies, NASA has 
focused on technology  development of HLA, specifi- 
cally on  the BQR concept.  Thus  far,  the  work  has 
been  confined to the areas of aerodynamics and  con- 
trols, in the belief that these are the  most critical 
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Figure 13.- History of lighter-than-air  program at  Ames  Research  Center. 

technical areas. The program  consists  of theoretical 
analyses,  wind-tunnel experiments, moving-base 
piloted  simulation  experiments, and  studies. 

A theoretical  study of  BQR  aerodynamic  interfer- 
ence has been  completed by Nielsen Engineering and 
Research (NEAR) (refs. 56, 57). In that  study, a pre- 
liminary computer program to  compute BQR  flow 
fields was  developed.  Figure 14 shows  the velocities 
induced on the surface of  the hull  and the circumfer- 
ential pressure distributions as predicted by  the 
NEAR  program for a specific case. 

I 
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A small-scale, wind-tunnel test program is cur- 
rently  in  the planning stage  (refs. 58, 59). Tests will 
be  done  in  the  12-Foot Pressure Wind Tunnel at 
Ames Research Center.  The purposes of  the  wind- 
tunnel  tests  are (1) validation  of theoretical analyses, 
(2) establishment of  the influence  of  Reynolds num- 
ber, (3) determination of aerodynamic  loads, 
(4) determination  of pressure distributions, (5) flow 
visualization, (6) determination of  the  effect of con- 
figurational  changes on aerodynamic  characteristics, 
and (7) provision of  experimental  data  for a flight- 
dynamics analysis and  simulation effort. Figure 15 
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Figure 14.- Interference analysis results (refs. 56,57) .  
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Figure 15.- 7-  by  10-Foot Wind Tunnel  buoyant 
quad-rotor  model (ref. 14). 

shows the model used in an earlier test of the BQR. 
This  model was built by NEAR  (funded by  Good- 
year) and  tested in the 7- by  10-Foot Wind Tunnel at  
Ames. Results of this  early  test were somewhat 
inconclusive because of insufficiently high Reynolds 
numbers (ref.  14). 

A major effort  that is under way is flight-dynamics 
simulation and analysis of the BQR concept.  The pri- 
mary goal of  this  contracted  effort is to develop an 
accurate, nonlinear, off-line simulation of the generic 
BQR,  including all aerodynamic interference  effects. 
The  contractor, Systems  Technology, Inc., will also 
develop linearized and real-time  simulations for use 
in  piloted moving-base simulators.  Development of 
suitable turbulence models and correlation  with 
experimental  data are important  parts of this  effort. 

In future  work,  the flight-dynamics  simulation will 
be used in  control-system research for the BQR. 
Included will be defintiion of suitable  control-system 
logic and investigations of handling  qualities. Moving- 
base simulators will be used extensively in  this work. 

Studies will continue  to be  made  primarily  in  sup- 
port  of  the research and technology  projects.  Cur- 
rently  under way are design studies of BQR research 
aircraft and studies of ground  handling  systems and 
procedures. 

Because the BQR is a new aircraft concept, large- 
scale testing, and,  ultimately, a flight research vehicle 
(FRV) are essential parts of any comprehensive 
research and technology program. An FRV is neces- 
sary to validate the results of analytical and small- 
and large-scale model experimental research, particu- 
larly in the areas of aerodynamics  and flight controls. 

Further, flight vehicles will be  needed  eventually to  
verify the  operational feasibility of the  concept. 
Many of the remaining  uncertainties are connected 
with  operational  aspects, such as ground  handling, 
adverse weather effects,  and  manpower  and ground 
facility requirements; these can be  adequately inves- 
tigated  only by flight test of sufficiently large 
vehicles. Finally, an  FRV will be a valuable aid in 
establishing the certification  and  airworthiness cri- 
teria for  this new and  unique class of vehicles. 

As currently envisioned, the  buoyant  quad-rotor 
research aircraft (BQRRA) would use the propulsion 
system components  of  an existing small helicopter 
type.  The vehicle would be capable of incorporating a 
large variety of flight-control schemes and have a cer- 
tain  amount of variable-geometry capability (e.g., 
changeable location of rotors relative to  the hull). 
Two envelope sizes would  be desirable for use in 
investigating two  different regimes of buoyant-to- 
total-lift  ratio.  The smaller envelope would be sized 
to allow testing of the BQRRA  in the  future 80- by 
120-foot section of the Ames Large-Scale Wind 
Tunnel. This  would allow safe and  systematic 
exploration  of  the flight  envelope and collection of 
data before manned  flight. 

CONCLUDING  REMARKS 

The  history and current  state of knowledge of 
several buoyant heavy-lift vehicle concepts have been 
reviewed. Many of these concepts appear to have 
promise, and  the technical feasibility of a  few has 
been largely established. The  buoyant  quad-rotor 
vehicle, in particular, has  been  studied by many 
organizations, and results to date have been generally 
positive. Research and technical  development of this 
concept is under  way at Ames Research Center  and 
at several other government and private organizations. 

Ames Research Center 
National  Aeronautics and Space Administration 

Moffett Field, California 94035, April 10,198 1 
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